Raman Spectroscopy as a Novel Method for the Characterization of Polydioxanone Medical Stents Biodegradation

Author:

Loskot JanORCID,Jezbera Daniel,Bezrouk AlešORCID,Doležal Rafael,Andrýs Rudolf,Francová Vendula,Miškář Dominik,Myslivcová Fučíková AlenaORCID

Abstract

Polydioxanone (PPDX), as an FDA approved polymer in tissue engineering, is an important component of some promising medical devices, e.g., biodegradable stents. The hydrolytic degradation of polydioxanone stents plays a key role in the safety and efficacy of treatment. A new fast and convenient method to quantitatively evaluate the hydrolytic degradation of PPDX stent material was developed. PPDX esophageal stents were degraded in phosphate-buffered saline for 24 weeks. For the first time, the changes in Raman spectra during PPDX biodegradation have been investigated here. The level of PPDX hydrolytic degradation was determined from the Raman spectra by calculating the area under the 1732 cm−1 peak shoulder. Raman spectroscopy, unlike Fourier transform infrared (FT-IR) spectroscopy, is also sensitive enough to monitor the decrease in the dye content in the stents during the degradation. Observation by a scanning electron microscope showed gradually growing cracks, eventually leading to the stent disintegration. The material crystallinity was increasing during the first 16 weeks, suggesting preferential degradation of the amorphous phase. Our results show a new easy and reliable way to evaluate the progression of PPDX hydrolytic degradation. The proposed approach can be useful for further studies on the behavior of PPDX materials, and for clinical practice.

Funder

Univerzita Hradec Králové

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3