Integrating Virus Monitoring Strategies for Safe Non-Potable Water Reuse

Author:

Jiang Sunny C.ORCID,Bischel Heather N.,Goel Ramesh,Rosso DiegoORCID,Sherchan Samendra P.,Whiteson Katrine L.,Yan Tao,Solo-Gabriele Helena M.ORCID

Abstract

Wastewater reclamation and reuse have the potential to supplement water supplies, offering resiliency in times of drought and helping to meet increased water demands associated with population growth. Non-potable water reuse represents the largest potential reuse market. Yet, economic constraints for new water reuse infrastructure and safety concerns due to microbial water quality, especially viral pathogen exposure, limit the widespread implementation of water reuse. Cost-effective, real-time methods to measure or indicate the viral quality of recycled water would do much to instill greater confidence in the practice. This manuscript discusses advancements in monitoring and modeling viral health risks in the context of water reuse. First, we describe current wastewater reclamation processes and treatment technologies with an emphasis on virus removal. Second, we review technologies for the measurement of viruses, both culture- and molecular-based, along with their advantages and disadvantages. We outline promising viral surrogates and specific pathogenic viruses that can serve as indicators of viral risk for water reuse. We suggest metagenomic analyses for viral screening and flow cytometry for quantification of virus-like particles as new approaches to complement more traditional methods. Third, we describe modeling to assess health risks through quantitative microbial risk assessments (QMRAs), the most common strategy to couple data on virus concentrations with human exposure scenarios. We then explore the potential of artificial neural networks (ANNs) to incorporate suites of data from wastewater treatment processes, water quality parameters, and viral surrogates. We recommend ANNs as a means to utilize existing water quality data, alongside new complementary measures of viral quality, to achieve cost-effective strategies to assess risks associated with infectious human viruses in recycled water. Given the review, we conclude that technologies will be ready to identify and implement viral surrogates for health risk reduction in the next decade. Incorporating modeling with monitoring data would likely result in a more robust assessment of water reuse risk.

Funder

Environmental Protection Agency

National Institutes of Health

United States Bureau of Reclamation

National Science Foundation

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference157 articles.

1. Wastewater Treatment and Reuse: Past, Present, and Future

2. Anonymous Report: 17 States Invest in Water Reuse as a Long-Term Supply Strategy. Underground Constructionhttps://ucononline.com/news/2017/04/report-17-states-invest-in-water-reuse-as-a-long-term-supply-strategy

3. Global experiences in water reuse

4. A review of polymeric membranes and processes for potable water reuse

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3