Estimating the Workability of Concrete with a Stereovision Camera during Mixing

Author:

Ojala Teemu1ORCID,Punkki Jouni1

Affiliation:

1. Department of Civil Engineering, School of Engineering, Aalto University, 02150 Espoo, Finland

Abstract

The correct workability of concrete is an essential parameter for its placement and compaction. However, an absence of automatic and transparent measurement methods to estimate the workability of concrete hinders the adaptation from laborious traditional methods such as the slump test. In this paper, we developed a machine-learning framework for estimating the slump class of concrete in the mixer using a stereovision camera. Depth data from five different slump classes was transformed into Haralick texture features to train several machine-learning classifiers. The best-performing classifier achieved a multiclass classification accuracy of 0.8179 with the XGBoost algorithm. Furthermore, we found through statistical analysis that while the denoising of depth data has little effect on the accuracy, the feature extraction of mixer blades and the choice of region of interest significantly increase the accuracy and the efficiency of the classifiers. The proposed framework shows robust results, indicating that stereovision is a competitive solution to estimate the workability of concrete during concrete production.

Funder

Co-operation agreement with the Finnish concrete industry

Publisher

MDPI AG

Reference69 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3