Environmental Analysis of Sustainable and Traditional Cooling and Lubrication Strategies during Machining Processes

Author:

Salem Amr,Hopkins Connor,Imad Mohamd,Hegab Hussien,Darras Basil,Kishawy Hossam A.

Abstract

Due to rising demands of replacing traditional cooling strategies with sustainable cooling strategies, the development of sustainable strategies such as minimum quantity lubrication (MQL) of nano-cutting fluids (NCFs) is on the rise. MQL of NCFs has received a lot of attention due to its positive impact on machining process efficiency. However, environmental and human health impacts of this strategy have not been fully investigated yet. This work aims to investigate the impacts of MQL of molybdenum disulfide (MoS2), multi-walled carbon nanotubes (MWCNTs), titanium dioxide (TiO2), and aluminum oxide (Al2O3) NCFs by employing a cradle-to-gate type of life cycle assessment (LCA). Besides, this paper provides a comparison of the impacts and machining performance when utilizing MQL of NCFs with other cooling strategies such as traditional flood cooling (TFC) of conventional cutting fluids and MQL of vegetable oils. It was found that NCFs have higher impacts than conventional cutting fluids and vegetable oils. The impacts of TiO2-NCF and MoS2-NCF were lower than the impacts of MWCNTs-NCF and Al2O3-NCF. MQL of NCFs presented higher impacts by 3.7% to 35.4% in comparison with the MQL of vegetable oils. TFC of conventional CFs displayed the lowest impact. However, TFC of conventional cutting fluids is contributing to severe health problems for operators. MQL of vegetable oils displayed higher impacts than TCFs of conventional cutting fluids. However, vegetable oils are considered to be environmentally friendly. According to the findings, the MQL of vegetable oils is the most sustainable strategy for machining processes with associated low/medium cutting temperatures. While MQL of TiO2 and MoS2 NCFs are the sustainable strategy for machining processes associated with high cutting temperatures.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3