Forecasting Dendrolimus sibiricus Outbreaks: Data Analysis and Genetic Programming-Based Predictive Modeling

Author:

Malashin Ivan1ORCID,Masich Igor123ORCID,Tynchenko Vadim123ORCID,Nelyub Vladimir14ORCID,Borodulin Aleksei1ORCID,Gantimurov Andrei1,Shkaberina Guzel23ORCID,Rezova Natalya23ORCID

Affiliation:

1. Artificial Intelligence Technology Scientific and Education Center, Bauman Moscow State Technical University, 105005 Moscow, Russia

2. Laboratory “Hybrid Methods of Modeling and Optimization in Complex Systems”, Siberian Federal University, 79 Svobodny Prospekt, 660041 Krasnoyarsk, Russia

3. Institute of Informatics and Telecommunications, Reshetnev Siberian State University of Science and Technology, 31 Krasnoyarsky Rabochy Prospekt, 660037 Krasnoyarsk, Russia

4. Scientific Department, Far Eastern Federal University, 690922 Vladivostok, Russia

Abstract

This study presents an approach to forecast outbreaks of Dendrolimus sibiricus, a significant pest affecting taiga ecosystems. Leveraging comprehensive datasets encompassing climatic variables and forest attributes from 15,000 taiga parcels in the Krasnoyarsk Krai region, we employ genetic programming-based predictive modeling. Our methodology utilizes Random Forest algorithm to develop robust forecasting model through integrated data analysis techniques. By optimizing hyperparameters within the predictive model, we achieved heightened accuracy, reaching a maximum precision of 0.9941 in forecasting pest outbreaks up to one year in advance.

Publisher

MDPI AG

Reference58 articles.

1. EFSA Panel on Plant Health (PLH), Jeger, M., Bragard, C., Caffier, D., Candresse, T., Chatzivassiliou, E., Dehnen-Schmutz, K., Gilioli, G., Jaques Miret, J.A., and MacLeod, A. (2018). Pest categorisation of Dendrolimus sibiricus. EFSA J., 16, e05301.

2. Occurrence of Dendrolimus pini and its control in the forests of Poland;Sliwa;Sylwan,1966

3. Integration of science and practice for Dendrolimus pini (L.) management—A review with special reference to Central Europe;Skrzecz;For. Ecol. Manag.,2020

4. The Siberian moth in Yakutia;Vinokurov;Sci. Technol. Yakutia,2002

5. Koltunov, E., and Erdakov, L. (2013). Modern Problems of Science and Education, Moscow State University of Psychology and Education (MSUPE).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3