Acoustic Emission Monitoring of Progressive Damage of Reinforced Concrete T-Beams under Four-Point Bending

Author:

Mandal Deba Datta,Bentahar MouradORCID,El Mahi AbderrahimORCID,Brouste Alexandre,El Guerjouma Rachid,Montresor Silvio,Cartiaux François-Baptiste

Abstract

Acoustic Emission (AE) is revealed to be highly adapted to monitor materials and structures in materials research and for site monitoring. AE-features can be either analyzed by means of physical considerations (geophysics/seismology) or through their time/frequency waveform characteristics. However, the multitude of definitions related to the different parameters as well as the processing methods makes it necessary to develop a comparative analysis in the case of a heterogeneous material such as civil engineering concrete. This paper aimed to study the micro-cracking behavior of steel fiber-reinforced reinforced concrete T-beams subjected to mechanical tests. For this purpose, four-points bending tests, carried out at different displacement velocities, were performed in the presence of an acoustic emission sensors network. Besides, a comparison between the sensitivity to damage of three definitions corresponding to the b-value parameter was performed and completed by the evolution of the RA-value and average frequency (AF) as a function of loading time. This work also discussed the use of the support-vector machine (SVM) approach to define different damage zones in the load-displacement curve. This work shows the limits of this approach and proposes the use of an unsupervised learning approach to cluster AE data according to physical and time/frequency parameters. The paper ends with a conclusion on the advantages and limitations of the different methods and parameters used in connection with the micro/macro tensile and shear mechanisms involved in concrete cracking for the purpose of in situ monitoring of concrete structures.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3