Development of Positively Charged Poly-L-Lysine Magnetic Nanoparticles as Potential MRI Contrast Agent

Author:

Antal Iryna1,Strbak Oliver2ORCID,Zavisova Vlasta1,Vojtova Jana2ORCID,Kubovcikova Martina1ORCID,Jurikova Alena1,Khmara Iryna1,Girman Vladimir3,Džunda Róbert4ORCID,Kovaľ Karol4,Koneracka Martina1ORCID

Affiliation:

1. Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia

2. Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 03601 Martin, Slovakia

3. Institute of Physics, Faculty of Sciences, Pavol Jozef Safarik University in Kosice, Park Angelinum 9, 04154 Kosice, Slovakia

4. Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia

Abstract

A colloidal solution of magnetic nanoparticles (MNPs) modified with biocompatible positively charged poly-L-lysine (PLL) with an oleate (OL) layer employed as an initial coating was produced as a potential MRI contrast agent. The effect of various PLL/MNPs’ mass ratios on the samples’ hydrodynamic diameter, zeta potential, and isoelectric point (IEP) was studied by the dynamic light-scattering method. The optimal mass ratio for MNPs’ surface coating was 0.5 (sample PLL0.5-OL-MNPs). The average hydrodynamic particle size in the sample of PLL0.5-OL-MNPs was 124.4 ± 1.4 nm, and in the PLL-unmodified nanoparticles, it was 60.9 ± 0.2 nm, indicating that the OL-MNPs’ surface became covered by PLL. Next, the typical characteristics of the superparamagnetic behavior were observed in all samples. In addition, the decrease in saturation magnetizations from 66.9 Am2/kg for MNPs to 35.9 and 31.6 Am2/kg for sample OL-MNPs and PLL0.5-OL-MNPs also confirmed successful PLL adsorption. Moreover, we show that both OL-MNPs and PLL0.5-OL-MNPs exhibit excellent MRI relaxivity properties and a very high r2(*)/r1 ratio, which is very desirable in biomedical applications with required MRI contrast enhancement. The PLL coating itself appears to be the crucial factor in enhancing the relaxivity of MNPs in MRI relaxometry.

Funder

ERDF

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3