Monthly Hydropower Scheduling of Cascaded Reservoirs Using a Genetic Algorithm with a Simulation Procedure

Author:

Baima Deji1,Qian Guoyuan1,Luo Jingzhen1,Wang Pengcheng1,Zheng Hao2ORCID,Wang Jinwen34

Affiliation:

1. School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China

2. Water Resources Department, Changjiang River Scientific Research Institute, 23 Huangpu Road, Wuhan 430010, China

3. Institute of Water Resources and Hydropower, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China

4. Hubei Key Laboratory of Digital River Basin Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 650041, China

Abstract

This study integrates genetic algorithms with simulation programs, applying the genetic algorithm’s (GA) fitness calculation within the simulation to reduce complexity and significantly improve the efficiency of the optimization process. Additionally, the simulation introduces the concept of “Field Leveling” (FL), utilizing a push–pull strategy to explore more space for absorbing and utilizing unnecessary spillage for energy generation, thereby maximizing electricity production and ensuring optimal reservoir scheduling. Two methods are provided, namely the field-leveling genetic algorithms GAFL1 and GAFL2. GAFL1 involves only pushing and does not include a push–pull process; thus, it cannot optimize spillage. On the other hand, GAFL2 implements a complete push–pull strategy, continuously exploring additional space to absorb and utilize unnecessary spillage. Both GAFL1 and GAFL2 achieved reasonable results; specifically, compared to SQP, GAFL1 improved firm yield by 8.3%, spillage increased by 2.2 times, and total energy decreased by 1.2%. GAFL2, building on the basis of GAFL1, effectively reduces spillage under all hydrological conditions without affecting the highest priority of stable output. However, the impact of reducing spillage on energy generation is not consistent; in wet and dry years, reducing spillage increases energy generation. However, in normal years, a reduction in spillage corresponds with decreased energy generation.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3