Review of Asymmetric Seafloor Spreading and Oceanic Ridge Jumps in the South China Sea

Author:

Wei Jiangong1234ORCID,Dai Shuangling3,Cheng Huai134ORCID,Wang Houjin3,Wang Pengcheng5,Li Fuyuan3,Xie Zhiyuan134,Zhu Rongwei3

Affiliation:

1. Sanya Institute of South China Sea Geology, Guangzhou Marine Geological Survey, China Geological Survey, Sanya 572024, China

2. Zhoushan Field Scientific Observation and Research Station for Marine Geo-Hazards, China Geological Survey, Qingdao 266237, China

3. Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 510075, China

4. Academy of South China Sea Geological Science, China Geological Survey, Sanya 572024, China

5. Key Laboratory of Submarine Geosciences and Prospecting Techniques, Ministry of Education, College of Marine Geosciences, Ocean University of China, Qingdao 266100, China

Abstract

Seafloor spreading is an important cornerstone of the theory of plate tectonics. Asymmetric seafloor spreading and oceanic ridge jumps are common phenomena in this process and play important roles in controlling oceanic crust accretion, regional tectonics and geological geometric boundaries. As the largest marginal sea in the western Pacific, the South China Sea is an ideal laboratory for dissecting the Wilson cycle of small marginal sea-type ocean basins restricted by surrounding blocks and exploring the deep dynamic processes of confined small ocean basins. In recent years, a lot of research has been conducted on the spreading history of the South China Sea and has achieved fruitful results. However, the detailed dynamic mechanisms of asymmetric seafloor spreading and ridge jumps are still unclear. Therefore, this paper summarizes the basic understanding about the dynamic mechanisms of global asymmetric seafloor spreading and ridge jumps and reviews the related research results of asymmetric seafloor spreading and ridge jumps in the South China Sea. Previous studies have basically confirmed that seafloor spreading in the South China Sea started between ~32 and 34 Ma in the east sub-basin and ended at ~15 Ma in the northwest sub-basin, with at least once oceanic ridge jump in the east sub-basin. The current research mainly focuses on the age of the seafloor spreading in the South China Sea and the location, time and stage of the ridge jumps, but there are relatively few studies on high-resolution lithospheric structure across these ridges and the dynamic mechanism of oceanic ridge jumps. Based on the current research progress, we propose that further studies should focus on the lithosphere–asthenosphere scale in the future, suggesting that marine magnetotelluric and Ocean Bottom Seismometer (OBS) surveys should be conducted across the residual oceanic ridges to perform a detailed analysis of the tectonics magmatism in the east sub-basin to gain insights into the dynamic mechanisms of oceanic ridge jumps and asymmetric seafloor spreading, which can promote understanding of the tectonic evolution of the South China Sea and improve the classical plate tectonics theory that was constructed based on the open ocean basins.

Funder

National Key R&D Program of China

China Geological Survey

China Geological Survey Project

Guangzhou Science and Technology Project

Publisher

MDPI AG

Reference81 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3