Underwater Sound Speed Field Forecasting Based on the Least Square Support Vector Machine

Author:

Wang Junting1,Xu Tianhe1ORCID,Huang Wei2ORCID,Zhang Liping3,Shu Jianxu1,Liu Yangfan1,Li Linyang4

Affiliation:

1. Shandong Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Science, Shandong University, Weihai 264209, China

2. Faculty of Information Science and Engineering, Ocean University of China, Qingdao 266100, China

3. State Key Laboratory of Geo-Information Engineering, Xi’an 710054, China

4. College of Geology Engineering and Geomantic, Chang’an University, Xi’an 710064, China

Abstract

Underwater sound speed is one of the most significant factors that affects high-accuracy underwater acoustic positioning and navigation. Due to its complex temporal variation, the forecasting of the underwater sound speed field (SSF) becomes a challenging task. Taking advantage of machine learning methods, we propose a new method for SSF forecasting based on the least square support vector machine (LSSVM) and a multi-parameter model, aiming to enhance the forecasting accuracy of underwater SSF with hourly resolution. We first use a matching extension method to standardize profile data and train the LSSVM with the parameters of observation time, temperature, salinity, and depth. We then employ radial basis function kernels to construct the forecasting model of SSF. We validate the feasibility and effectiveness of the LSSVM model by comparing it with the polynomial fitting (PF) and back propagation neural network (BPNN) methods, using hourly data obtained from the measured data and open data. The results show that the means of the root mean square for the LSSVM based on the observation time parameter and the LSSVM based on the multi-parameter model achieve 0.51 m/s and 0.45 m/s, respectively, presenting a significant improvement compared with the PF (0.82 m/s) and BPNN (0.76 m/s) methods.

Funder

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation

China Post-doctoral Science Foundation

Open Foundation of the State Key Laboratory of Geo-Information Engineering

Publisher

MDPI AG

Reference31 articles.

1. Concept of comprehensive PNT and related key technologies;Yang;Acta Geod. Cartogr. Sin.,2016

2. Resilient PNT Concept Frame;Yang;Acta Geod. Cartogr. Sin.,2018

3. PNT intelligent services;Yang;Acta Geod. Cartogr. Sin.,2021

4. Centimeter-level-precision seafloor geodetic positioning model with self-structured empiricasound speed profile;Xue;Satell. Navig.,2023

5. Spatial correlation of the acoustic vector field of the surface noise in three-dimensional ocean environments;Huang;J. Acoust. Soc. Am.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3