Application of ANN in Construction: Comprehensive Study on Identifying Optimal Modifier and Dosage for Stabilizing Marine Clay of Qingdao Coastal Region of China

Author:

Bo Qirui1ORCID,Liu Junwei1,Shang Wenchang1,Garg Ankit2,Jia Xiaoru1,Sun Kaiyue1

Affiliation:

1. School of Civil Engineering, Qingdao University of Technology, Qingdao 266525, China

2. MOE Key Laboratory of Intelligent Manufacturing Technology, College of Engineering, Shantou University, Shantou 515063, China

Abstract

Nowadays, the use of new compound chemical stabilizers to treat marine clay has gained significant attention. However, the complex non-linear relationship between the influencing factors and the unconfined compressive strength of chemically treated marine clay is not clear. In order to study the influence of various factors (dosage, type of stabilizer, curing age) on the unconfined compressive strength of solidified soil during chemical treatment, experiments were performed to determine the unconfined compressive strength of soft marine clay modified with various types of stabilizers. Further, an artificial neural network (ANN) model was used to establish a prediction model based on the unconfined compressive strength test data and to verify the performance. Sensitivity and optimization analyses were further conducted to explore the relative significance of parameters as well as the optimal dosage amount. Research has found that when the content of aluminate cement is 89.5% and the content of curing agent is 30%, the unconfined compressive strength significantly increases after 28 days of solidification, and the change in quicklime content has the greatest effect on the improvement in the unconfined compressive strength. The influence of modifiers on the unconfined compressive strength is in the order: potassium hydroxide > kingsilica > quick lime > bassanite. The values of each factor were obtained when the unconfined compressive strength was the maximum, which provided support for the optimization of the treatment scheme. The analysis of chemical treatment is no longer limited to the linear relationship according to the test results, which proves the feasibility of non-linear relationship analysis based on the artificial neural network.

Funder

Shandong Provincial Natural Science Foundation

Joint Funds of the National Natural Science Foundation of China

Taishan Scholars Program

National Nature Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Developing preliminary cost estimates for foundation systems of high-rise buildings;International Journal of Construction Management;2024-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3