Sensitivity of Dynamic Response of Truss-Type Aquaculture Platform to Floating Body Arrangement

Author:

Cao Yu12ORCID,Li Zhuo13,Wang Kewen13,Ye Qian4

Affiliation:

1. College of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201306, China

2. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116081, China

3. Shanghai Engineering Research Center of Marine Renewable Energy, Shanghai 201306, China

4. School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, China

Abstract

Aquaculture equipment is moving from offshore areas to the deep sea to obtain a cleaner farming environment, but will suffer from a worse marine environment. Truss-type aquaculture floating platforms have gradually gained the favor of deep-sea and ocean aquaculture due to being resistant to corrosion, lightweight, easy to move, having modular assembly characteristics, and so on. Here, a modular aquaculture floating platform that is mainly composed of high-density polyethylene non-metallic pipes as a floating body, a truss structure support and a single-point mooring system is designed. The three-dimensional potential flow theory and Morison equation are applied to the motion and force prediction of discontinuous and open structures, and an evaluation method for analyzing the hydrodynamic performance of the platform system is proposed. Then, a sensitivity analysis of the dynamic response is conducted on the density and length of the bottom floating pipe arrangement of the truss-type aquaculture floating platform. The results show that the pitch motion of the heading direction and the roll motion of the beam direction have a remarkable effect on the hydrodynamics of the truss-type aquaculture floating platform, and the maximum amplitude is 12.9 deg and 10.8 deg, respectively. The effective tension under the heading direction is greater than that under the Beam direction. And the sparser the arrangement of the floating pipe is and the longer the length of the floating pipe is, the more improved the hydrodynamic performance of the floating platform will be, but the effective tension is greatly affected by the wavelength and period, so it is necessary to design the appropriate floating pipe length according to the actual marine environment. This study could provide an engineering reference for the design, analysis, and application of an aquaculture floating platform.

Funder

the National Key R&D Program of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3