Solvent Replacement Strategies for Processing Pharmaceuticals and Bio-Related Compounds—A Review

Author:

Lee Jia Lin1ORCID,Chong Gun Hean1ORCID,Ota Masaki23,Guo Haixin4ORCID,Smith Richard Lee2ORCID

Affiliation:

1. Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia

2. Graduate School of Environmental Studies, Tohoku University, Aramaki Aza Aoba, 468-1, Aoba-ku, Sendai 980-8572, Japan

3. Graduate School of Engineering, Tohoku University, Aramaki Aza Aoba, 6-6-11-403, Aoba-ku, Sendai 980-8579, Japan

4. Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China

Abstract

An overview of solvent replacement strategies shows that there is great progress in green chemistry for replacing hazardous di-polar aprotic solvents, such as N,N-dimethylformamide (DMF), 1-methyl-2-pyrrolidinone (NMP), and 1,4-dioxane (DI), used in processing active industrial ingredients (APIs). In synthetic chemistry, alcohols, carbonates, ethers, eucalyptol, glycols, furans, ketones, cycloalkanones, lactones, pyrrolidinone or solvent mixtures, 2-methyl tetrahydrofuran in methanol, HCl in cyclopentyl methyl ether, or trifluoroacetic acid in propylene carbonate or surfactant water (no organic solvents) are suggested replacement solvents. For the replacement of dichloromethane (DCM) used in chromatography, ethyl acetate ethanol or 2-propanol in heptanes, with or without acetic acid or ammonium hydroxide additives, are suggested, along with methanol acetic acid in ethyl acetate or methyl tert-butyl ether, ethyl acetate in ethanol in cyclohexane, CO2-ethyl acetate, CO2-methanol, CO2-acetone, and CO2-isopropanol. Supercritical CO2 (scCO2) can be used to replace many organic solvents used in processing materials from natural sources. Vegetable, drupe, legume, and seed oils used as co-extractants (mixed with substrate before extraction) can be used to replace the typical organic co-solvents (ethanol, acetone) used in scCO2 extraction. Mixed solvents consisting of a hydrogen bond donor (HBD) solvent and a hydrogen bond acceptor (HBA) are not addressed in GSK or CHEM21 solvent replacement guides. Published data for 100 water-soluble and water-insoluble APIs in mono-solvents show polarity ranges appropriate for the processing of APIs with mixed solvents. When water is used, possible HBA candidate solvents are acetone, acetic acid, acetonitrile, ethanol, methanol, 2-methyl tetrahydrofuran, 2,2,5,5-tetramethyloxolane, dimethylisosorbide, Cyrene, Cygnet 0.0, or diformylxylose. When alcohol is used, possible HBA candidates are cyclopentanone, esters, lactone, eucalytol, MeSesamol, or diformylxylose. HBA—HBA mixed solvents, such as Cyrene—Cygnet 0.0, could provide interesting new combinations. Solubility parameters, Reichardt polarity, Kamlet—Taft parameters, and linear solvation energy relationships provide practical ways for identifying mixed solvents applicable to API systems.

Funder

Trumer Medicare Sdn Bhd

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3