Affiliation:
1. Pavlov Institute of Physiology of the Russian Academy of Sciences, 199034 Saint Petersburg, Russia
2. Ioffe Institute of the Russian Academy of Sciences, 194021 Saint Petersburg, Russia
3. Department of Pain Management, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200240, China
Abstract
The signaling or non-pumping Na,K-ATPase function was first observed by us in the nociceptive neuron; Na,K-ATPase transduced the signals from the opioid-like receptors to NaV1.8 channels. This study elucidates the role of the rhamnosyl residue of ouabain in the activation of the Na,K-ATPase signaling function. The effects resulting from activation of Na,K-ATPase signaling by the Ca2+ chelate complex of ouabain (EO) are not manifested upon removal of the rhamnosyl residue, as demonstrated in viable cells by the highly sensitive patch-clamp and organotypic cell culture methods. Docking calculations show that the rhamnosyl residue is involved in five intermolecular hydrogen bonds with the Na,K-ATPase α1-subunit, which are fundamentally important for activation of the Na,K-ATPase signaling function upon EO binding. The main contribution to the energy of EO binding is provided by its steroid core, which forms a number of hydrogen bonds and hydrophobic interactions with Na,K-ATPase that stabilize the ligand–receptor complex. Another critically important role in EO binding is expected to be played by the chelated Ca2+ cation, which should switch on strong intermolecular ionic interactions between the EO molecule and two α1-Na,K-ATPase amino acid residues, Glu116 and Glu117.
Funder
Ministry of Science and Higher Education of the Russian Federation
Subject
Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献