Symmetry-Enhanced Fuzzy Logic Analysis in Parallel and Cross-Road Scenarios: Optimizing Direction and Distance Weights for Map Matching

Author:

Zhou Weicheng1,Ge Huilin1ORCID,Ashraf Muhammad Awais2ORCID

Affiliation:

1. Ocean College, Jiangsu University of Science and Technology, Zhenjiang 212100, China

2. Department of Information Engineering, Chang’an University, Xi’an 710000, China

Abstract

This study addresses the challenges of setting segmentation points in the membership function and determining appropriate weights for different types of information within a fuzzy logic algorithm for map matching. We use linear fitting to derive an empirical formula for setting segmentation points for the information membership function. Furthermore, we evaluate the effects of various weights for direction and distance information in parallel and cross-road scenarios. The research identified the optimal distance that achieves the highest matching accuracy and provided insights into how the weights of connection, direction, and distance information affect this accuracy. The simulations confirmed the critical importance of precise segmentation point settings and weight determinations in enhancing the accuracy of fuzzy logic algorithms for map matching. The results underscore the potency of our tailored parameter-setting strategy and contribute to knowledge of symmetry, offering practical insights for implementing fuzzy logic in map matching with a particular emphasis on the principle of symmetry in algorithm design and information processing.

Funder

Zhenjiang key research and development plan—social development project

Publisher

MDPI AG

Reference33 articles.

1. Holmberg, K. (2015). Map Matching by Optimization. Inst. Technol., Available online: https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-113944.

2. Lou, Y., Zhang, C., Zheng, Y., Xie, X., Wang, W.H., and Huang, Y. (2009, January 4–6). Map-matching for Low-sampling-rate GPS Trajectories. Proceedings of the ACM Sigspatial International Symposium on Advances in Geographic Information Systems, Acm-Gis 2009, Seattle, DC, USA.

3. IF-Matching: Towards Accurate Map-Matching with Information Fusion;Hu;IEEE Trans. Knowl. Data Eng.,2016

4. Research on Parallelized Real-time Map Matching Algorithm for Massive GPS Data;Wang;Clust. Comput.,2017

5. Cloud Computing-based Map-matching for Transportation Data Center;Huang;Electron. Commer. Res. Appl.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3