Integration of Manifold Learning and Density Estimation for Fine-Tuned Face Recognition

Author:

Ge Huilin1ORCID,Zhu Zhiyu1,Ouyang Jiali1,Ashraf Muhammad Awais2ORCID,Qiu Zhiwen1,Ibrahim Umar Muhammad3

Affiliation:

1. School of Automation, Jiangsu University of Science and Technology, Zhenjiang 212003, China

2. School of Information Engineering, Chang’an University, Xi’an 710000, China

3. School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

With the rapid advancements in data analysis and the increasing complexity of high-dimensional datasets, traditional dimensionality reduction techniques like Local Linear Embedding (LLE) often face challenges in maintaining accuracy and efficiency. This research aims to overcome the limitations of LLE, specifically its reliance on the nearest neighbor concept, its inability to distinguish differences among manifold points, and its underutilization of data discrimination information. To address these issues, we propose an advanced LLE algorithm that integrates decision tree-based neighbor recognition with Gaussian kernel density estimation. Decision trees accurately determine neighboring relationships, which are then optimized using Gaussian kernel density estimation to better reflect the distribution of sample points on the manifold. The algorithm also incorporates data discrimination information to enhance classification accuracy and efficiency. Evaluations in facial recognition tasks using SVM classifiers demonstrate significant improvements. Integrating decision trees (LLE-DT) yielded accuracy gains, with LFW at 98.75%, CFP 96.10%, and Olivetti 92.18%. Gaussian density estimation (LLE-GDE) achieved further enhancements, especially in LFW (99.13%), with CFP at 96.85%, and Olivetti at 91.82%. Combining both methods (LLE-DT-GDE) led to substantial improvements: LFW 99.61%, CFP 97.23%, and Olivetti 93.56%, highlighting the synergy between decision trees and Gaussian estimation. This advanced LLE algorithm effectively addresses the limitations of traditional approaches, showing promising results in complex data processing tasks such as facial recognition. These findings suggest its potential for broader applications in fields requiring robust data analysis and classification.

Funder

Zhenjiang key research and development plan—social development project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3