The VEGF/VEGFR Axis Revisited: Implications for Cancer Therapy

Author:

Mabeta Peace,Steenkamp VanessaORCID

Abstract

The vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor (VEGFR) axis is indispensable in the process of angiogenesis and has been implicated as a key driver of tumor vascularization. Consequently, several strategies that target VEGF and its cognate receptors, VEGFR-1 and VEGFR-2, have been designed to treat cancer. While therapies targeting full-length VEGF have resulted in an improvement in both overall survival and progression-free survival in various cancers, these benefits have been modest. In addition, the inhibition of VEGFRs is associated with undesirable off-target effects. Moreover, VEGF splice variants that modulate sprouting and non-sprouting angiogenesis have been identified in recent years. Cues within the tumor microenvironment determine the expression patterns of these variants. Noteworthy is that the mechanisms of action of these variants challenge the established norm of VEGF signaling. Furthermore, the aberrant expression of some of these variants has been observed in several cancers. Herein, developments in the understanding of the VEGF/VEGFR axis and the splice products of these molecules, as well as the environmental cues that regulate these variants are reviewed. Furthermore, strategies that incorporate the targeting of VEGF variants to enhance the effectiveness of antiangiogenic therapies in the clinical setting are discussed.

Funder

University of Pretoria

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference96 articles.

1. Vascularization of the brown-pearce rabbit epithelioma transplant as seen in the transparent ear chamber;Ide;Am. J. Roentg.,1939

2. Tumor angiogenesis: A possible control point in tumor growth;Folkman;Ann. Inter. Med.,1975

3. Manipulating the tumor microenvironment: Opportunities for therapeutic targeting;Mabeta;Front. Anti. Cancer Drug Discov.,2017

4. New insights in anti-angiogenesis in multiple myeloma;Ribatti;Int. J. Mol. Sci.,2018

5. Intussusceptive angiogenesis and its role in vascular morphogenesis, patterning, and remodeling;Makanya;Angiogenesis,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3