Deciphering the Role of miR-200c-3p in Type 1 Diabetes (Subclinical Cardiovascular Disease) and Its Correlation with Inflammation and Vascular Health

Author:

Bakhashab SherinORCID,Yuen Yeoh Megan LiORCID,Coulson David J.,Steel Samuel Christian,Ray Sabina L.,Weaver Jolanta U.

Abstract

Uncomplicated type 1 diabetes (T1DM) displays all features of subclinical cardiovascular disease (CVD) as is associated with inflammation, endothelial dysfunction and low endothelial progenitor cells. MiR-200c-3p has been shown in animal tissues to be pro-atherogenic. We aimed to explore the role of miR-200c-3p in T1DM, a model of subclinical CVD. 19 samples from T1DM patients and 20 from matched controls (HC) were analyzed. MiR-200c in plasma and peripheral blood mononuclear cells (PBMCs) was measured by real-time quantitative polymerase chain reaction. The results were compared with the following indices of vascular health: circulating endothelial progenitor cells, (CD45dimCD34+VEGFR-2+ or CD45dimCD34+CD133+) and proangiogenic cells (PACs). MiR-200c-3p was significantly downregulated in PBMCs but not in plasma in T1DM. There was a significant negative correlation between the expression of miR-200c-3p and HbA1c, interleukin-7 (IL-7), vascular endothelial growth factor-C (VEGF-C), and soluble vascular cell adhesion molecule-1, and a positive correlation with CD45dimCD34+VEGFR-2+, CD45dimCD34+CD133+ and PACs. Receiver operating curve analyses showed miR-200c-3p as a biomarker for T1DM with significant downregulation of miR-200c-3p, possibly defining subclinical CVD at HbA1c > 44.8 mmol/mol (6.2%). In conclusion, downregulated miR-200c-3p in T1DM correlated with diabetic control, VEGF signaling, inflammation, vascular health and targeting VEGF signaling, and may define subclinical CVD. Further prospective studies are necessary to validate our findings in a larger group of patients.

Funder

Diabetes Research and Wellness Foundation UK

Diabetes Research Fund, Queen Elizabeth Hospital, Gateshead, UK

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Endothelial Dysfunction in Diabetes Mellitus: New Insights;International Journal of Molecular Sciences;2023-06-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3