Circ-ERC2 Is Involved in Melatonin Synthesis by Regulating the miR-125a-5p/MAT2A Axis

Author:

Guo Hai-XiangORCID,Zheng Yi,Zhao Guo-Kun,Wang Hao-Qi,Yu Song,Gao FeiORCID,Zhang Jia-BaoORCID,Zhang Yong-HongORCID,Yuan BaoORCID

Abstract

The circadian rhythm of melatonin secretion in the pineal gland is highly conserved in vertebrates. Melatonin levels are always elevated at night. Acetylserotonin O-methyltransferase (ASMT) is the last enzyme in the regulation of melatonin biosynthesis (N-acetyl-5-hydroxytryptamine-melatonin). S-adenosylmethionine (SAM) is an important methyl donor in mammals and can be used as a substrate for the synthesis of melatonin. Methionine adenosyltransferase (MAT) catalyzes the synthesis of SAM from methionine and ATP and has a circadian rhythm. CircRNA is an emerging type of endogenous noncoding RNA with a closed loop. Whether circRNAs in the pineal gland can participate in the regulation of melatonin synthesis by binding miRNAs to target mat2a as part of the circadian rhythm is still unclear. In this study, we predicted the targeting relationship of differentially expressed circRNAs, miRNAs and mRNAs based on the results of rat pineal RNA sequencing. Mat2a siRNA transfection confirmed that mat2a is involved in the synthesis of melatonin. Circ-ERC2 and miR-125a-5p were screened out by software prediction, dual-luciferase reporter experiments, cell transfection, etc. Finally, we constructed a rat superior cervical ganglionectomy model (SCGx), and the results showed that circ-ERC2 could participate in the synthesis of melatonin through the miR-125a-5p/MAT2A axis. The results of the study revealed that circ-ERC2 can act as a molecular sponge of miR-125a-5p to regulate the synthesis of melatonin in the pineal gland by targeting mat2a. This experiment provides a basis for research on the circadian rhythm of noncoding RNA on pineal melatonin secretion.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3