The Influence of Lifestyle and Treatment on Oxidative Stress and Inflammation in Diabetes

Author:

Wronka Magdalena,Krzemińska JuliaORCID,Młynarska EwelinaORCID,Rysz Jacek,Franczyk Beata

Abstract

Diabetes is considered a new pandemic of the modern world, and the number of sufferers is steadily increasing. Sustained hyperglycemia promotes the production of free radicals and leads to persistent, low-grade inflammation. Oxidative stress causes mitochondrial destruction, which along with activation of the hexosamine pathway, nuclear factor-κB (Nf-κb), p38 mitogen-activated protein kinase (p38 MAPK), c-jun NH2 terminal kinase/stress-activated protein kinase (JNK/SAPK) or toll-like receptors (TLRs), leads to pancreatic β-cell dysfunction. However, there is also the protective mechanism that counteracts oxidative stress and inflammation in diabetes, mitophagy, which is a mitochondrial autophagy. An important part of the strategy to control diabetes is to lead a healthy lifestyle based on, among other things, regular physical activity, giving up smoking, eating a balanced diet containing ingredients with antioxidant potential, including vegetables and fruits, and using hypoglycemic pharmacotherapy. Tobacco smoke is a recognized modifiable risk factor for many diseases including diabetes, and it has been shown that the risk of the disease increases in proportion to the intensity of smoking. Physical activity as another component of therapy can effectively reduce glucose fluctuations, and high intensity interval exercise appears to have the most beneficial effect. A proper diet not only increases cellular sensitivity to insulin, but is also able to reduce inflammation and oxidative stress. Pharmacotherapy for diabetes can also affect oxidative stress and inflammation. Some oral drugs, such as metformin, pioglitazone, vildagliptin, liraglutide, and exenatide, cause a reduction in markers of oxidative stress and/or inflammation, while the new drug Imeglimin reverses pancreatic β-cell dysfunction. In studies of sitagliptin, vildagliptin and exenatide, beneficial effects on oxidative stress and inflammation were achieved by, among other things, reducing glycemic excursions. For insulin therapy, no corresponding correlation was observed. Insulin did not reduce oxidative stress parameters. There was no correlation between glucose variability and oxidative stress in patients on insulin therapy. The data used in this study were obtained by searching PubMed online databases, taking into account recent studies.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3