Synergistic Strength–Ductility Improvement in an Additively Manufactured Body-Centered Cubic HfNbTaTiZr High-Entropy Alloy via Deep Cryogenic Treatment

Author:

Liang Zhuoheng123ORCID,Ye Zhanggen123,Liu Chunfeng45,Sun Liangbo45,Zhang Yongzhong123

Affiliation:

1. GRINM Group Corporation Limited, National Engineering & Technology Research Center for Non-Ferrous Metals Composites, Beijing 101407, China

2. GRINM Metal Composites Technology Co., Ltd., Beijing 101407, China

3. General Research Institute for Nonferrous Metals, Beijing 100088, China

4. Center of Analysis, Measurement and Computing, Harbin Institute of Technology, Harbin 150001, China

5. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

Abstract

HfNbTaTiZr high-entropy alloy has wide application prospects as a biomedical material, and the use of laser additive manufacturing can solve the forming problems faced by the alloy. In view of the characteristics of the one-time forming of additive manufacturing methods, it is necessary to develop non-mechanical processing modification methods. In this paper, deep cryogenic treatment (DCT) is first applied to the modification of a HEA with BCC structure, then the post-processing method of DCT is combined with laser melting deposition (LMD) technology to successfully realize the coordinated improvement of forming and strength–ductility synergistic improvement in lightweight Hf0.25NbTa0.25TiZr alloy. The final tensile strength of the alloy after DCT treatment is 25% higher than that of the as-cast alloy and 11% higher than that of the as-deposited alloy, and the elongation is increased by 48% and 10%, respectively. In addition, DCT also achieves induced phase transition without additional deformation.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3