Identification and Analysis of PEPC Gene Family Reveals Functional Diversification in Orchidaceae and the Regulation of Bacterial-Type PEPC

Author:

Li Ruyi1ORCID,Gao Xuyong1,Wu Yuwei1,Wei Chunyi1,Li Ming-He12,Liu Ding-Kun12,Liu Zhong-Jian12ORCID

Affiliation:

1. Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2. Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China

Abstract

Phosphoenolpyruvate carboxylase (PEPC) gene family plays a crucial role in both plant growth and response to abiotic stress. Approximately half of the Orchidaceae species are estimated to perform CAM pathway, and the availability of sequenced orchid genomes makes them ideal subjects for investigating the PEPC gene family in CAM plants. In this study, a total of 33 PEPC genes were identified across 15 orchids. Specifically, one PEPC gene was found in Cymbidium goeringii and Platanthera guangdongensis; two in Apostasia shenzhenica, Dendrobium chrysotoxum, D. huoshanense, Gastrodia elata, G. menghaiensis, Phalaenopsis aphrodite, Ph. equestris, and Pl. zijinensis; three in C. ensifolium, C. sinense, D. catenatum, D. nobile, and Vanilla planifolia. These PEPC genes were categorized into four subgroups, namely PEPC-i, PEPC-ii, and PEPC-iii (PTPC), and PEPC-iv (BTPC), supported by the comprehensive analyses of their physicochemical properties, motif, and gene structures. Remarkably, PEPC-iv contained a heretofore unreported orchid PEPC gene, identified as VpPEPC4. Differences in the number of PEPC homolog genes among these species were attributed to segmental duplication, whole-genome duplication (WGD), or gene loss events. Cis-elements identified in promoter regions were predominantly associated with light responsiveness, and circadian-related elements were observed in each PEPC-i and PEPC-ii gene. The expression levels of recruited BTPC, VpPEPC4, exhibited a lower expression level than other VpPEPCs in the tested tissues. The expression analyses and RT-qPCR results revealed diverse expression patterns in orchid PEPC genes. Duplicated genes exhibited distinct expression patterns, suggesting functional divergence. This study offered a comprehensive analysis to unveil the evolution and function of PEPC genes in Orchidaceae.

Funder

National Natural Science Foundation of China

Outstanding Youth Scientific Fund of Fujian Agriculture and Forestry University

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3