Novel Prediction of Diagnosis Effectiveness for Adaptation of the Spectral Kurtosis Technology to Varying Operating Conditions

Author:

Kolbe Stuart,Gelman Len,Ball AndrewORCID

Abstract

In this paper, two novel consistency vectors are proposed, which when combined with appropriate machine learning algorithms, can be used to adapt the Spectral Kurtosis technology for optimum gearbox damage diagnosis in varying operating conditions. Much of the existing research in the field is limited to test apparatus run in constant and carefully controlled operating conditions, and the authors have previously publicised that the Spectral Kurtosis technology requires adaptation to achieve the highest possible probabilities of correct diagnosis when a gearbox is run in non-stationary conditions of speed and load. However, the authors’ previous adaptation has been computationally heavy using a brute-force approach unsuited to online use, and therefore, created the requirement to develop these two newly proposed vectors and allow computationally lighter techniques more suited to online condition monitoring. The new vectors are demonstrated and experimentally validated on vibration data collected from a gearbox run in multiple combinations of operating conditions; for the first time, the two consistency vectors are used to predict diagnosis effectiveness, with the comparison and proof of relative gains between the traditional and novel techniques discussed. Consistency calculations are computationally light and thus, many combinations of Spectral Kurtosis technology parameters can be evaluated on a dataset in a very short time. This study shows that machine learning can predict the total probability of correct diagnosis from the consistency values and this can quickly provide pre-adaptation/prediction of optimum Spectral Kurtosis technology parameters for a dataset. The full adaptation and damage evaluation process, which is computationally heavier, can then be undertaken on a much lower number of combinations of Spectral Kurtosis resolution and threshold.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3