Computational Probing the Methylation Sites Related to EGFR Inhibitor-Responsive Genes

Author:

Yuan Rui,Chen Shilong,Wang YongcuiORCID

Abstract

The emergence of drug resistance is one of the main obstacles to the treatment of lung cancer patients with EGFR inhibitors. Here, to further understand the mechanism of EGFR inhibitors in lung cancer and offer novel therapeutic targets for anti-EGFR-inhibitor resistance via the deep mining of pharmacogenomics data, we associated DNA methylation with drug sensitivities for uncovering the methylation sites related to EGFR inhibitor sensitivity genes. Specifically, we first introduced a grouped regularized regression model (Group Least Absolute Shrinkage and Selection Operator, group lasso) to detect the genes that were closely related to EGFR inhibitor effectiveness. Then, we applied the classical regression model (lasso) to identify the methylation sites associated with the above drug sensitivity genes. The new model was validated on the well-known cancer genomics resource: CTRP. GeneHancer and Encyclopedia of DNA Elements (ENCODE) database searches indicated that the predicted methylation sites related to EGFR inhibitor sensitivity genes were related to regulatory elements. Moreover, the correlation analysis on sensitivity genes and predicted methylation sites suggested that the methylation sites located in the promoter region were more correlated with the expression of EGFR inhibitor sensitivity genes than those located in the enhancer region and the TFBS. Meanwhile, we performed differential expression analysis of genes and predicted methylation sites and found that changes in the methylation level of some sites may affect the expression of the corresponding EGFR inhibitor-responsive genes. Therefore, we supposed that the effectiveness of EGFR inhibitors in lung cancer may be improved by methylation modification in their sensitivity genes.

Funder

Youth Innovation Promotion Association

Qinghai Sciences and Technology Department for Basic Research Program

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3