Multi-Level Biological Network Analysis and Drug Repurposing Based on Leukocyte Transcriptomics in Severe COVID-19: In Silico Systems Biology to Precision Medicine

Author:

Sagulkoo PakornORCID,Chuntakaruk Hathaichanok,Rungrotmongkol Thanyada,Suratanee ApichatORCID,Plaimas KitipornORCID

Abstract

The coronavirus disease 2019 (COVID-19) pandemic causes many morbidity and mortality cases. Despite several developed vaccines and antiviral therapies, some patients experience severe conditions that need intensive care units (ICU); therefore, precision medicine is necessary to predict and treat these patients using novel biomarkers and targeted drugs. In this study, we proposed a multi-level biological network analysis framework to identify key genes via protein–protein interaction (PPI) network analysis as well as survival analysis based on differentially expressed genes (DEGs) in leukocyte transcriptomic profiles, discover novel biomarkers using microRNAs (miRNA) from regulatory network analysis, and provide candidate drugs targeting the key genes using drug–gene interaction network and structural analysis. The results show that upregulated DEGs were mainly enriched in cell division, cell cycle, and innate immune signaling pathways. Downregulated DEGs were primarily concentrated in the cellular response to stress, lysosome, glycosaminoglycan catabolic process, and mature B cell differentiation. Regulatory network analysis revealed that hsa-miR-6792-5p, hsa-let-7b-5p, hsa-miR-34a-5p, hsa-miR-92a-3p, and hsa-miR-146a-5p were predicted biomarkers. CDC25A, GUSB, MYBL2, and SDAD1 were identified as key genes in severe COVID-19. In addition, drug repurposing from drug–gene and drug–protein database searching and molecular docking showed that camptothecin and doxorubicin were candidate drugs interacting with the key genes. In conclusion, multi-level systems biology analysis plays an important role in precision medicine by finding novel biomarkers and targeted drugs based on key gene identification.

Funder

National Science, Research and Innovation Fund (NSRF), and King Mongkut’s University of Technology North Bangkok

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3