Deep-Learning for the Diagnosis of Esophageal Cancers and Precursor Lesions in Endoscopic Images: A Model Establishment and Nationwide Multicenter Performance Verification Study

Author:

Gong Eun JeongORCID,Bang Chang SeokORCID,Jung KyoungwonORCID,Kim Su Jin,Kim Jong Wook,Seo Seung InORCID,Lee Uhmyung,Maeng You Bin,Lee Ye Ji,Lee Jae Ick,Baik Gwang Ho,Lee Jae Jun

Abstract

Background: Suspicion of lesions and prediction of the histology of esophageal cancers or premalignant lesions in endoscopic images are not yet accurate. The local feature selection and optimization functions of the model enabled an accurate analysis of images in deep learning. Objectives: To establish a deep-learning model to diagnose esophageal cancers, precursor lesions, and non-neoplasms using endoscopic images. Additionally, a nationwide prospective multicenter performance verification was conducted to confirm the possibility of real-clinic application. Methods: A total of 5162 white-light endoscopic images were used for the training and internal test of the model classifying esophageal cancers, dysplasias, and non-neoplasms. A no-code deep-learning tool was used for the establishment of the deep-learning model. Prospective multicenter external tests using 836 novel images from five hospitals were conducted. The primary performance metric was the external-test accuracy. An attention map was generated and analyzed to gain the explainability. Results: The established model reached 95.6% (95% confidence interval: 94.2–97.0%) internal-test accuracy (precision: 78.0%, recall: 93.9%, F1 score: 85.2%). Regarding the external tests, the accuracy ranged from 90.0% to 95.8% (overall accuracy: 93.9%). There was no statistical difference in the number of correctly identified the region of interest for the external tests between the expert endoscopist and the established model using attention map analysis (P = 0.11). In terms of the dysplasia subgroup, the number of correctly identified regions of interest was higher in the deep-learning model than in the endoscopist group, although statistically insignificant (P = 0.48). Conclusions: We established a deep-learning model that accurately classifies esophageal cancers, precursor lesions, and non-neoplasms. This model confirmed the potential for generalizability through multicenter external tests and explainability through the attention map analysis.

Funder

This research was supported by Hallym University Research Fund 2020.

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3