Rotational Molding of Linear Low-Density Polyethylene Composites Filled with Wheat Bran

Author:

Hejna AleksanderORCID,Barczewski MateuszORCID,Andrzejewski JacekORCID,Kosmela Paulina,Piasecki AdamORCID,Szostak MarekORCID,Kuang TairongORCID

Abstract

Application of lignocellulosic fillers in the manufacturing of wood polymer composites (WPCs) is a very popular trend of research, however it is still rarely observed in the case of rotational molding. The present study aimed to analyze the impact of wheat bran content (from 2.5 wt.% to 20 wt.%) on the performance of rotationally-molded composites based on a linear low-density polyethylene (LLDPE) matrix. Microscopic structure (scanning electron microscopy), as well as physico-mechanical (density, porosity, tensile performance, hardness, rebound resilience, dynamic mechanical analysis), rheological (oscillatory rheometry) and thermo-mechanical (Vicat softening temperature) properties of composites were investigated. Incorporation of 2.5 wt.% and 5 wt.% of wheat bran did not cause significant deterioration of the mechanical performance of the material, despite the presence of ‘pin-holes’ at the surface. Values of tensile strength and rebound resilience were maintained at a very similar level, while hardness was slightly decreased, which was associated with the porosity of the structure. Higher loadings resulted in the deterioration of mechanical performance, which was also expressed by the noticeable rise of the adhesion factor. For lower loadings of filler did not affect the rheological properties. However, composites with 10wt.% and 20 wt.% also showed behavior suitable for rotational molding. The presented results indicate that the manufacturing of thin-walled products based on wood polymer composites via rotational molding should be considered a very interesting direction of research.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3