Modeling of Metalized Food Packaging Plastics Pyrolysis Kinetics Using an Independent Parallel Reactions Kinetic Model

Author:

Yousef SamyORCID,Eimontas Justas,Striūgas Nerijus,Abdelnaby Mohammed Ali

Abstract

Recently, a pyrolysis process has been adapted as an emerging technology to convert metalized food packaging plastics waste (MFPWs) into energy products with a high economic benefit. In order to upscale this technology, the knowledge of the pyrolysis kinetic of MFPWs is needed and studying these parameters using free methods is not sufficient to describe the last stages of pyrolysis. For a better understanding of MFPWs pyrolysis kinetics, independent parallel reactions (IPR) kinetic model and its modification model (MIPR) were used in the present research to describe the kinetic parameters of MFPWs pyrolysis at different heating rates (5–30 °C min−1). The IPR and MIPR models were built according to thermogravimetric (TG)-Fourier-transform infrared spectroscopy (FTIR)-gas chromatography−mass spectrometry (GC-MS) results of three different types of MFPWs (coffee, chips, and chocolate) and their mixture. The accuracy of the developed kinetic models was evaluated by comparing the conformity of the DTG experimental results to the data calculated using IPR and MIPR models. The results showed that the dependence of the pre-exponential factor on the heating rate (as in the case of MIPR model) led to better conformity results with high predictability of kinetic parameters with an average deviation of 2.35% (with an improvement of 73%, when compared to the IPR model). Additionally, the values of activation energy and pre-exponential factor were calculated using the MIPR model and estimated at 294 kJ mol−1 and 5.77 × 1017 kJ mol−1 (for the mixed MFPW sample), respectively. Finally, GC-MS results illustrated that pentane (13.8%) and 2,4-dimethyl-1-heptene isopropylcyclobutane (44.31%) represent the main compounds in the released volatile products at the maximum decomposition temperature.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3