Anti-Bacterial and Anti-Fouling Capabilities of Poly(3,4-Ethylenedioxythiophene) Derivative Nanohybrid Coatings on SUS316L Stainless Steel by Electrochemical Polymerization

Author:

Hsu Chuan-ChihORCID,Cheng Yu-Wei,Liu Che-Chun,Peng Xin-Yao,Yung Ming-Chi,Liu Ting-YuORCID

Abstract

We have successfully fabricated poly(3,4-ethylenedioxythiophene) (PEDOT) derivative nanohybrid coatings on flexible SUS316L stainless steel by electrochemical polymerization, which can offer anti-fouling and anti-bacterial capabilities. PEDOT derivative nanohybrids were prepared from polystyrene sulfonates (PSS) and graphene oxide (GO) incorporated into a conducting polymer of PEDOT. Additionally, the negative charge of the PEDOT/GO substrate was further modified by poly-diallyldimethylammonium chloride (PDDA) to form a positively charged surface. These PEDOT derivative nanohybrid coatings could provide a straightforward means of controlling the surface energy, roughness, and charges with the addition of various derivatives in the electrochemical polymerization and electrostatically absorbed process. The characteristics of the PEDOT derivative nanohybrid coatings were evaluated by Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), water contact angle, and surface potential (zeta potential). The results show that PEDOT/PSS and PEDOT/GO nanohybrid coatings exhibit excellent anti-fouling capability. Only 0.1% of bacteria can be adhered on the surface due to the lower surface roughness and negative charge surface by PEDOT/PSS and PEDOT/GO modification. Furthermore, the anti-bacterial capability (7 mm of inhibition zone) was observed after adding PDDA on the PEDOT/GO substrates, suggesting that the positive charge of the PEDOT/GO/PDDA substrate can effectively kill bacteria (Staphylococcus aureus). Given their anti-fouling and anti-bacterial capabilities, PEDOT derivative nanohybrid coatings have the potential to be applied to biomedical devices such as cardiovascular stents and surgical apparatus.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3