Battery Internal Temperature Measurement Using LC Resonant Tank for Battery Management Systems

Author:

Simatupang Desmon1ORCID,Benshatti Abdulraouf1,Park Sung-Yeul1

Affiliation:

1. Electrical and Computer Engineering Department, University of Connecticut, Storrs, CT 06269, USA

Abstract

This paper suggests an embedded battery impedance measurement based on an Inductor Capacitor (LC) resonant tank to measure the battery’s internal temperature for battery management systems (BMS). The purpose of the BMS is to provide state-of-charge (SoC) balancing and the preheating mechanism at sub-zero temperatures. Battery Impedance Spectroscopy (BIS) for battery internal temperature measurement is achieved by an LC resonant tank connected to the batteries in parallel to induce created resonant current and voltage into the battery. The peaks of the voltage and current waveforms are measured and recorded. Then, the resistance of the battery can be calculated by comparing the peak voltage and current waveforms. Since the resistance of the battery is affected by the battery’s internal temperature, the internal temperature of the battery can be estimated. The benefit of using the LC tank for the battery’s internal temperature is to reduce data processing since no window and Fast Fourier Transform (FFT) is needed for this method. In addition, the proposed method measures the battery’s internal temperature without any internal or external temperature sensor. Power Simulation (PSIM) simulation software is used in this proposed method. Panasonic batteries 18650 and a dSPACE DS1104 are used for the experiment to verify the proposed method. The proposed method shows that the LC resonant tank can measure three batteries B1, B2, and B3 internal resistance with 17.87%, 18.14%, and 17.73% errors compared to the Frequency Response Analyzer (FRA). In addition, the total time needed for balancing is 400 s, and the total energy consumed by the preheating mechanism is 0.214%/°C to preheat the lithium-ion batteries (LIBs) from −5 °C to 10 °C.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3