Lithium Niobate for Fast Cycling in Li-ion Batteries: Review and New Experimental Results

Author:

Hüger Erwin12ORCID,Riedel Lukas2,Zhu Jing2,Stahn Jochen3ORCID,Heitjans Paul4ORCID,Schmidt Harald12ORCID

Affiliation:

1. Clausthal Centre of Material Technology, Clausthal University of Technology, D-38678 Clausthal-Zellerfeld, Germany

2. Solid State Kinetics Group, Institute of Metallurgy, Clausthal University of Technology, D-38678 Clausthal-Zellerfeld, Germany

3. Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen, Switzerland

4. Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, D-30167 Hannover, Germany

Abstract

Li-Nb-O-based insertion layers between electrodes and electrolytes of Li-ion batteries (LIBs) are known to protect the electrodes and electrolytes from unwanted reactions and to enhance Li transport across interfaces. An improved operation of LIBs, including all-solid-state LIBs, is reached with Li-Nb-O-based insertion layers. This work reviews the suitability of polymorphic Li-Nb-O-based compounds (e.g., crystalline, amorphous, and mesoporous bulk materials and films produced by various methodologies) for LIB operation. The literature survey on the benefits of niobium-oxide-based materials for LIBs, and additional experimental results obtained from neutron scattering and electrochemical experiments on amorphous LiNbO3 films are the focus of the present work. Neutron reflectometry reveals a higher porosity in ion-beam sputtered amorphous LiNbO3 films (22% free volume) than in other metal oxide films such as amorphous LiAlO2 (8% free volume). The higher porosity explains the higher Li diffusivity reported in the literature for amorphous LiNbO3 films compared to other similar Li-metal oxides. The higher porosity is interpreted to be the reason for the better suitability of LiNbO3 compared to other metal oxides for improved LIB operation. New results are presented on gravimetric and volumetric capacity, potential-resolved Li+ uptake and release, pseudo-capacitive fractions, and Li diffusivities determined electrochemically during long-term cycling of LiNbO3 film electrodes with thicknesses between 14 and 150 nm. The films allow long-term cycling even for fast cycling with rates of 240C possessing reversible capacities as high as 600 mAhg−1. Electrochemical impedance spectroscopy (EIS) shows that the film atomic network is stable during cycling. The Li diffusivity estimated from the rate capability experiments is considerably lower than that obtained by EIS but coincides with that from secondary ion mass spectrometry. The mostly pseudo-capacitive behavior of the LiNbO3 films explains their ability of fast cycling. The results anticipate that amorphous LiNbO3 layers also contribute to the capacity of positive (LiNixMnyCozO2, NMC) and negative LIB electrode materials such as carbon and silicon. As an outlook, in addition to surface-engineering, the bulk-engineering of LIB electrodes may be possible with amorphous and porous LiNbO3 for fast cycling with high reversible capacity.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3