Abstract
Nonaqueous redox flow batteries are promising candidates for large-scale energy storage technologies. However, the effect of structural design and key factors limiting the performance are still not thoroughly understood. In this work, we constructed a physical model to study the effect of various design parameters on the performance of such a battery. It was found that the kinetics of redox reaction was improved with active material concentration and electrode surface area. The modeling results also showed that the local current density was much higher in the vicinity of membrane than near the current collector due to relatively low ionic conductivity of electrolytes. Furthermore, decreasing the electrode thickness and increasing the membrane conductivity both reduced the voltage loss associated with ohmic resistance, thereby resulting in improved battery performance. The obtained numerical simulation results would be helpful not only for understanding the physicochemical process in nonaqueous vanadium flow batteries but also for future structural optimization of these batteries.
Subject
Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献