How the Sodium Cations in Anode Affect the Performance of a Lithium-ion Battery

Author:

Shao Dan,Rao Dewei,Wu Aihua,Luo XiangyiORCID

Abstract

Large cations such as potassium ion (K+) and sodium ion (Na+) could be introduced into the lithium-ion (Li-ion) battery system during material synthesis or battery assembly. However, the effect of these cations on charge storage or electrochemical performance has not been fully understood. In this study, sodium ion was taken as an example and introduced into the lithium titanium oxide (LTO) anode through the carboxymethyl cellulose (CMC) binder. After the charge/discharge cycles, these ions doped into the LTO lattice and improved both the lithium-ion diffusivity and the electronic conductivity of the anode. The sodium ion’s high concentration (>12.9%), however, resulted in internal doping of Na+ into the LTO lattice, which retarded the transfer of lithium ions due to repulsion and physical blocking. The systematic study presented here shows that large cations with an appropriate concentration in the electrode would be beneficial to the electrochemical performance of the Li-ion battery.

Funder

National Key R & D Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3