An Improved Comprehensive Model of Pyrolysis of Large Coal Particles to Predict Temperature Variation and Volatile Component Yields

Author:

Zhou Wenning,Huo Hailong,Li Qinye,Dou Ruifeng,Liu Xunliang

Abstract

In this work, an improved comprehensive model was developed for large coal particles to predict temperature variation and volatile component yields. The kinetics model of volatile component yields, where the volatile matters were assumed to comprise nine species, was combined with heat transfer model. The interaction between volatile yield and heat transfer during pyrolysis of large Maltby coal particles was investigated. An apparent temperature difference has been observed between the surface and core of particles at the initial heating stage. The non-uniform temperature distribution inside coal particles causes non-simultaneous volatile yields release from the surface and core area. The volatile release occurs after the coal temperature rises higher than 350 °C, and its yield steeply increases within the temperature range of 450–520 °C. The peak of volatile release rate corresponds to about 485 °C due to the rapid release of tar and H2O. The tar is almost completely released at around 550 °C. With the increasing particle size, the difference in temperature and volatile yield between the surface and core increases at the end of heating. The results are expected to provide insights into the interaction between heat transfer and volatile yields during pyrolysis of large coal particles.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3