An Extended Car-Following Model Considering Lateral Gap and Optimal Velocity of the Preceding Vehicle

Author:

Zhang Zhiyong1ORCID,Tang Wu1,Feng Wenming2,Liu Zhen1,Huang Caixia3

Affiliation:

1. School of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410114, China

2. Hengyang Tellhow Communication Vehicles Co., Ltd., Hengyang 421099, China

3. College of Mechanical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China

Abstract

The car-following model (CFM) utilizes intelligent transportation systems to gather comprehensive vehicle travel information, enabling an accurate description of vehicle driving behavior. This offers valuable insights for designing autonomous vehicles and making control decisions. A novel extended CFM (ECFM) is proposed to accurately characterize the micro car-following behavior in traffic flow, expanding the stable region and improving anti-interference capabilities. Linear stability analysis of the ECFM using perturbation methods is conducted to determine its stable conditions. The reductive perturbation method is used to comprehensively describe the nonlinear characteristics of traffic flow by solving the triangular shock wave solution, described by the Burgers equation, in the stable region, the solitary wave solution, described by the Korteweg–de Vries (KdV) equation, in the metastable region, and the kink–antikink wave solution, described by the modified Korteweg–de Vries (mKdV) equation, in the unstable region. These solutions depict different traffic density waves. Theoretical analysis of linear stability and numerical simulation indicate that considering both the lateral gap and the optimal velocity of the preceding vehicle, rather than only the lateral gap as in the traditional CFM, expands the stable region of traffic flow, enhances the anti-interference capability, and accelerates the dissipation speed of disturbances. By improving traffic flow stability and reducing interference, the ECFM can decrease traffic congestion and idle time, leading to lower fuel consumption and greenhouse gas emissions. Furthermore, the use of intelligent transportation systems to optimize traffic control decisions supports a more efficient urban traffic management, contributing to sustainable urban development.

Funder

Hunan Provincial Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3