Treatment of Aquaculture Wastewater through Chitin/ZnO Composite Photocatalyst

Author:

Lin Xiajing,Yang Aili,Huang Guohe,Zhou Xiong,Zhai Yuanyuan,Chen Xiujuan,McBean Ed

Abstract

This paper proposed a newly explored composite photocatalyst, Chitin/ZnO, prepared via the sol-gel method for exploring its photocatalytic activity in the simulated aquaculture wastewater under UV irradiation. The study mainly involves the application of Chitin/ZnO from three aspects: the structure, the principle and the degradation efficiency. The effects of purification operation factors including mass ratio rate, dosage, calcination temperature, initial NH4+–N concentration and illumination conditions on the NH4+–N removal effectiveness were investigated. Optimum conditions were explored through orthogonal experiments, which revealed that 88.73% NH4+–N removal from 60 mg/L synthetic wastewater was achieved by direct illumination for 120 min. Additionally, Chitin/ZnO photocatalysts (mass ratio of 2:3) at a calcination temperature of 500 °C were favorable for Chitin loaded over a ZnO lattice. The obtained nanoparticles of Chitin/ZnO were characterized using SEM and X-ray diffraction. The purpose of this paper is to grope for an economical and easy method of Chitin/ZnO powder preparation and to provide a practical approach for future research on the photocatalytic purification of aquaculture wastewater.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference34 articles.

1. Simultaneous photocatalytic removal of ammonium and nitrite in water using Ce3+–Ag+ modified TiO2

2. Technology and Application of Aquaculture Wastewater Treatment;Fang;Technol. Equip. Environ. Pollut. Control,2004

3. Screening of poor nutrition aerobic denitrifying bacteria and characteristics of nitrogen removal from source water;Zhou;J. Environ. Eng.,2016

4. Preparation of nanometer zinc oxide and its photocatalytic activity in sunlight;Su;Acta Inorgan. Chem.,2010

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3