Structural Characteristics of Endorheic Rivers in the Tarim Basin

Author:

Wang YichuORCID,Liu Danlu,Liang Enhang,Ni JinrenORCID

Abstract

Endorheic rivers as landlocked systems with no hydrological connections to marine environments are suffering from water and ecosystem crisis worldwide, yet little is known about their structural characteristics with complex geomorphic and climatic dependence. Based on the river networks identified from 30 m resolution digital elevation models and surface water dynamic information derived from Landsat images, we investigate the hierarchical characteristics of 60 sub-basins in the Tarim Basin, the largest endorheic river basin in China. In the Tarim River basin, endorheic rivers exhibit a self-similarity only in the range of stream-orders 1–4, compared to the range of stream-orders 1–5 observed in exorheic rivers, owning to the limited stream power to maintain the similar aggregation of rivers in the arid regions. Moreover, the Tarim River networks demonstrate lower bifurcation ratio (2.48), length ratio (2.03), fractal dimension (1.38), and drainage density (0.24 km−1) in representative sub-basins, with a significant decay in median values compared with those derived from exohreic rivers at similar scales, suggesting sparser and imperfect developed branching river networks in endorheic basins. Further analysis on the Tarim reveals that endorheic river structure is more related to glacier extent (r = 0.67~0.84), potential evapotranspiration (r = 0.63~0.81), and groundwater type index (r = 0.64~0.73), which is essentially different from the structure of exorheic river represented by the Yellow River largely controlled by surface runoff, precipitation, and vegetation coverage. This study stresses the differences in intrinsic structural characteristics and extrinsic drivers of endorheic and exorheic rivers and highlights the necessity of differentiated strategies for endorheic river management in fragile ecosystems.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3