Aged Mouse Hippocampus Exhibits Signs of Chronic Hypoxia and an Impaired HIF-Controlled Response to Acute Hypoxic Exposures

Author:

Snyder BrinaORCID,Wu Hua-Kang,Tillman Brianna,Floyd Thomas F.

Abstract

Altered hypoxia-inducible factor-alpha (HIF-α) activity may have significant consequences in the hippocampus, which mediates declarative memory, has limited vascularization, and is vulnerable to hypoxic insults. Previous studies have reported that neurovascular coupling is reduced in aged brains and that diseases which cause hypoxia increase with age, which may render the hippocampus susceptible to acute hypoxia. Most studies have investigated the actions of HIF-α in aging cortical structures, but few have focused on the role of HIF-α within aged hippocampus. This study tests the hypothesis that aging is associated with impaired hippocampal HIF-α activity. Dorsal hippocampal sections from mice aged 3, 9, 18, and 24 months were probed for the presence of HIF-α isoforms or their associated gene products using immunohistochemistry and fluorescent in situ hybridization (fISH). A subset of each age was exposed to acute hypoxia (8% oxygen) for 3 h to investigate changes in the responsiveness of HIF-α to hypoxia. Basal mean intensity of fluorescently labeled HIF-1α protein increases with age in the hippocampus, whereas HIF-2α intensity only increases in the 24-month group. Acute hypoxic elevation of HIF-1α is lost with aging and is reversed in the 24-month group. fISH reveals that glycolytic genes induced by HIF-1α (lactose dehydrogenase-a, phosphoglycerate kinase 1, and pyruvate dehydrogenase kinase 1) are lower in aged hippocampus than in 3-month hippocampus, and mRNA for monocarboxylate transporter 1, a lactose transporter, increases. These results indicate that lactate, used in neurotransmission, may be limited in aged hippocampus, concurrent with impaired HIF-α response to hypoxic events. Therefore, impaired HIF-α may contribute to age-associated cognitive decline during hypoxic events.

Funder

Margaret Milam McDermott Foundation

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3