Synthesis and Bioactivity of Phthalimide Analogs as Potential Drugs to Treat Schistosomiasis, a Neglected Disease of Poverty

Author:

Singh Snigdha,El-Sakkary Nelly,Skinner Danielle E.,Sharma Prem Prakash,Ottilie Sabine,Antonova-Koch Yevgeniya,Kumar Prashant,Winzeler ElizabethORCID,Poonam ,Caffrey Conor R.,Rathi BrijeshORCID

Abstract

The neglected tropical disease, schistosomiasis, is caused by trematode blood flukes of the Schistosoma genus and infects approximately 200 million people worldwide. With just one partially effective drug available for disease treatment, new drugs are urgently needed. Herein, a series of 47 phthalimide (Pht) analogues possessing high-value bioactive scaffolds (i.e., benzimidazole and 1,2,3,-triazoles) was synthesized by click-chemistry. Compounds were evaluated for anti-schistosomal activity in culture against somules (post-infective larvae) and adults of Schistosoma mansoni, their predicted ADME (absorption, distribution, metabolism, and excretion) properties, and toxicity vs. HepG2 cells. The majority showed favorable parameters for surface area, lipophilicity, bioavailability and Lipinski score. Thirteen compounds were active at 10 µM against both somules and adults (6d, 6f, 6i–6l, 6n–6p, 6s, 6r’, 6t’ and 6w). Against somules, the majority caused degeneracy and/or death after 72 h; whereas against adult parasites, five compounds (6l, 6d, 6f, 6r’ and 6s) elicited degeneracy, tegumental (surface) damage and/or death. Strongest potency against both developmental stages was recorded for compounds possessing n-butyl or isobutyl as a linker, and a pentafluorophenyl group on triazole. Apart from five compounds for which anti-parasite activity tracked with toxicity to HepG2 cells, there was apparently no toxicity to HepG2 cells (EC50 values ≥50 µM). The data overall suggest that phthaloyl-triazole compounds are favorable synthons for additional studies as anti-schistosomals.

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3