Mechanically-Incorporated Controlled-Release Fertilizer Results in Greater Nitrogen and Salt Leaching Losses from Soilless Substrate in Containers

Author:

Pitton Bruno John Lewis1,Wikramanayake Ariesha Mayanka1,Johnson Grant Edward1

Affiliation:

1. Department of Plant Sciences, University of California, Davis, CA 95616, USA

Abstract

Uniform incorporation of controlled-release fertilizer (CRF) is a recommended best management practice to reduce nitrogen leaching losses from container-plant production. The potential for damage to CRF prill coating when mechanically incorporated into a soilless substrate was tested. Osmocote Plus 15-9-12 was uniformly incorporated mechanically or manually at the same rate into a soilless substrate and leachate was collected over 76 days. Two experiments were conducted, with or without lavender plants planted into the soilless substrate. Leachate volume, electrical conductivity (EC), and pH were recorded and aliquots were later analyzed for inorganic nitrogen content. Electrical conductivity and leachate volume were used to calculate total salt content. Greater total salts, ammonium, and nitrate were leached from planted or unplanted mechanically incorporated soilless substrate compared to manually incorporated. Plants grown in soilless substrate with mechanically incorporated CRF did not have decreased plant shoot biomass even though leachate EC was consistently greater throughout the experiment. Mechanically incorporating CRF in soilless substrate results in greater leaching losses and is likely a result of CRF prill coating damage during incorporation. Researchers should report incorporation method when publishing results on CRF in container-plant production. Container-plant producers should ensure that their mechanical-incorporation equipment does not cause unintended damage to their CRF of choice.

Funder

California Department of Food and Agriculture (CDFA) Specialty Crop Block

California Department of Food and Agriculture (CDFA) Fertilizer Research and Education

CANERS Foundation

Horticultural Research Institute

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3