Abstract
Flaxseed could be suitable for obtaining high-quality sprouts and microgreens thanks to high amounts of nutrients and antioxidant, antidiabetic, and anticancer compound content in its seeds. Recent studies highlighted that seedling growth, nutritional compound, and secondary metabolite content can be strongly managed by regulation of the light spectrum used during germination. The present study intended to shed light on flaxseed as emerging and novel species for sprouts and microgreens and to evaluate the effect of light, with different spectrum compositions (100% blue, 100% red, 100% green, and red:green:blue—1:1:1) on the performance of flax microgreens and sprouts grown indoors under controlled conditions. Microgreens showed, compared to sprouts, a higher chlorophyll (+62.6%), carotenoid (+24.4%), and phenol content (+37.8%), antioxidant capacity (+25.1%) and a lower dry matter content (−30.7%). Besides, microgreens treated with 100% blue light were characterized by the highest content of flavonoids (2.48 mg CAE g−1 FW), total phenols (3.76 mg GAE g−1 FW), chlorogenic acid (1.10 mg g−1 FW), and antioxidant capacity (8.06 µmol TEAC g−1 FW). The paper demonstrates the feasibility of obtaining flax sprouts and microgreens indoors with a considerable antioxidant capacity and health-promoting compounds by modulating the light spectrum.
Subject
Horticulture,Plant Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献