Vermicompost Improves Tomato Yield and Quality by Promoting Carbohydrate Transport to Fruit under Salt Stress

Author:

Wu Di12,Chen Chunlan1,Liu Yifei1,Zhang Guoxian13ORCID,Yang Lijuan13

Affiliation:

1. College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China

2. Institute of Plant Nutrition and Environmental Resources, Liaoning Academy of Agricultural Sciences, Shenyang 110866, China

3. Key Laboratory of Protected Horticulture, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China

Abstract

To explore the effect of vermicompost on the yield and quality of tomato cultivated in salty soil, we investigated the soil chemical properties, the yield, vitamin C, organic acid, soluble solids, and nitrate of fruit, photosynthesis, and carbohydrates of plants grown under various salt levels applied with the application of either commercial chemical fertilizers, cow manure, or vermicompost. Results showed that the tomato yield was not increased from the chemical fertilizer application, while there was an increase from the cow manure and vermicompost (increased 31.7% and 65.2%, respectively) under salt stress. Compared to no salt stress, the contents of vitamin C, organic acid, soluble solids, and nitrate increased 26.55%, 40.59%, 46.31%, and 35.08%, respectively, under salt stress (2 g NaCl·kg−1 soil). Compared with the Control, the application of chemical fertilizers failed to improve the sugar/acid ratio but increased nitrate content, while cow manure and vermicompost improved the sugar/acid ratio by 42.0% and 73.1%, respectively. Particularly, vermicompost increased vitamin C and reduced nitrate to the greatest extent among the different fertilizer treatments. The decrease in sodium (Na+) in the roots and leaves, increase in carbohydrates in fruit, and photosynthetic efficiency of leaves imply an amendment effect of vermicompost on salt stress. Moreover, vermicompost also facilitated the transit of carbohydrates from leaves to fruits by increasing the accumulation of nitrogen, phosphate, and potassium in fruits, leaves, and roots, while decreasing proline and soluble protein accumulation in leaves and roots. In conclusion, vermicompost could alleviate the adverse effect of salt stress and improve tomato yield and fruit quality by improving the photosynthetic capacity and promoting carbohydrate transport to fruit. The findings give a new perspective on the beneficial effect of vermicompost on tomato yield and quality.

Funder

Distinguished Professor of Liaoning Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3