Arbuscular Mycorrhizae Contribute to Growth, Nutrient Uptake, and Ornamental Characteristics of Statice (Limonium sinuatum [L.] Mill.) Subject to Appropriate Inoculum and Optimal Phosphorus

Author:

Sheikh-Assadi Morteza1,Khandan-Mirkohi Azizollah1ORCID,Taheri Mohammad Reza1,Babalar Mesbah1,Sheikhi Hossein1,Nicola Silvana2ORCID

Affiliation:

1. Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj 31587-77871, Iran

2. Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Horticultural Sciences—Inhortosanitas, Via Leonardo da Vinci, 44-Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy

Abstract

With the world’s population and pollutants on the rise, it is crucial to find sustainable and environmentally friendly solutions that increase production efficiency. Organic horticulture is an effective strategy for creating a harmless and sustainable crop production system. Arbuscular mycorrhizal fungi (AMF) have been proposed as reliable biofertilizers for sustainable agriculture, and inoculum production is a rapidly expanding market. AMF can enhance plant nutrition and growth, but their efficacy varies depending on the plant species, inoculum type, and available P concentrations. This study evaluates the response of ornamental statice (Limonium sinuatum [L.] Mill.) to mycorrhizal inoculation (first factor) with Glomus mosseae (M1), G. intraradices (M2), or their mixture (M3), plus non-inoculation (M0), and varying available P concentrations (second factor) of 10 (control, P1), 20 (P2), and 40 (P3) mg kg−1 soil in greenhouse conditions in a factorial experiment based on randomized complete block design with three replications. Root colonization, growth parameters, some ornamental traits, and the absorption of P, N, K, Ca, Zn, and Fe were measured. Root colonization was estimated as 30–65% and was reduced approximately by 32.4% with increasing P concentration in the soil. The lowest colonization percentage was recorded in P3 (45.69, 39.31, and 30.18 for M1, M2, and M3, respectively). Statice plants were positively influenced by inoculation, especially with G. mosseae in moderately available P (P2), which was also confirmed by the results of the principal component analysis. Overall, inoculated plants exhibited better nutritional status, growth, and ornamental traits than non-inoculated plants. Furthermore, mycorrhization delayed the time to the flowering of statice by 12, 7, and 9 days in M1, M2, and M3, respectively, compared to non-mycorrhizal (M0) plants. In conclusion, mycorrhizal inoculation can improve the plant nutrition, growth, and ornamental value of statice by selecting appropriate inoculum and optimal P concentrations. The results of this study suggest that mycorrhizal inoculation can be effectively used in the future to increase the quantity and quality of statice production.

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3