RSM and ANN Modeling of Camelina (Camelina sativa L. Crantz) Seed Yield as Affected by Nitrogen, Sulfur, Cow Manure, and Row Spacing

Author:

Yari Mohsen1,Rokhzadi Asad12ORCID,Shamsi Keyvan3,Pasari Babak12,Rahimi Abdol Rahman12

Affiliation:

1. Department of Agronomy and Plant Breeding, Sanandaj Branch, Islamic Azad University, Sanandaj 6616935391, Iran

2. Research Center for Agriculture, Animal Husbandry, and Medicinal Plants, Sanandaj Branch, Islamic Azad University, Sanandaj 6616935391, Iran

3. Department of Agronomy and Plant Breeding, Kermanshah Branch, Islamic Azad University, Kermanshah 6718997551, Iran

Abstract

Camelina [Camelina sativa (L.) Crantz] is an annual versatile oilseed crop of the Brassicaceae family, with an increasingly cultivated area. Predicting camelina seed yield response to fertilization and planting density is of great importance in understanding production potential and management planning. Therefore, the current study aimed to estimate the seed yield of camelina by response surface methodology (RSM) and artificial neural network (ANN) as affected by different levels of planting row spacing and nitrogen (N), sulfur (S), and cow manure (CM) fertilization. The experiment was conducted in two growing years of 2019–2020 and 2020–2021, based on a central composite design with four factors including row spacing (15–35 cm), N (0–200 kg ha−1), S (0–100 kg ha−1), and CM (0–40 t ha−1). The RSM models for seed yield versus fertilization and row spacing factors in both years were statistically significant and had an acceptable predictive ability. Camelina seed yield decreased with increasing row spacing but showed a positive response to increasing the amount of N, S, and CM fertilizers. Comparing the performance of the models showed that, although the RSM models were significant and had the necessary efficiency in predicting camelina seed yield, the ANN models were more accurate. The performance criteria of coefficient of determination (R2), root mean square error (RMSE), standard error of prediction (SEP), mean absolute error (MAE), and Akaike information criterion (AICc) averaged over the two years for the RSM model were 0.924, 51.60, 5.51, 41.14, and 394.05, respectively, and for the ANN model were 0.968, 32.62, 3.54, 19.55, and 351.33, respectively. Based on the results, the ANN modeling can be used in predicting camelina seed yield in field conditions with more confidence than the RSM technique.

Publisher

MDPI AG

Reference67 articles.

1. Camelina uses, genetics, genomics, production, and management;Berti;Ind. Crop. Prod.,2016

2. Agro-biochemical Characterisation of Camelina sativa: A review;Guendouz;Agric. Rev.,2022

3. Camelina, an ancient oilseed crop actively contributing to the rural renaissance in Europe. A review;Zanetti;Agron. Sustain. Dev.,2021

4. Camelina as a sustainable oilseed crop: Contributions of plant breeding and genetic engineering;Vollmann;Biotechnol. J.,2015

5. Camelina zoning for different climate conditions in Kurdistan Province;Ghamarnia;Agrotech. Ind. Crop.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3