Variations in Essential Oil Compositions and Changes in Oil Cells during Leaf Development of Citral Chemotype of Camphora officinarum Nees ex Wall.

Author:

Zhang Beihong1,Ling Qingyan1ORCID,Xiao Zufei1,Zhong Qing2,Zhao Ruiqi1,Jin Zhinong1

Affiliation:

1. Jiangxi Provincial Engineering Research Center for Seed-Breeding and Utilization of Camphor Trees, Nanchang Institute of Technology, Nanchang 330099, China

2. Ji’an Landscaping Bureau, City Landscaping Center, Ji’an 343000, China

Abstract

The citral chemotype of Camphora officinarum Nees ex Wall. is a promising industrial plant that contains an abundance of citral, which is widely used in medical, chemical, food, and other fields. For a more in-depth exploration, the dynamic characteristics of its essential oil (EO), oil compositions (OCs), and oil cells during leaf development were determined in the present study. The leaf phenotype changed rapidly from the 1st to the 4th week after leaf bud germination. The oil yield (OY), obtained via supercritical carbon dioxide extraction, reached the highest value of 2.82% ± 0.20% in the 12th week. Leaf development is a prerequisite for the production of EO, and the difference in the OY was not significant after leaf maturation. The OCs, analyzed using gas chromatography–mass spectrometry (GC-MS), mainly included aldehydes, alcohols, and hydrocarbons. Different types of compounds accumulated differently during leaf development: the highest relative content of alcohol in the OCs was 30.18% in the 2nd week, while that of aldehyde was 76.11% in the 6th week. In total, 130 OCs were detected, and two isomers of citral, namely, geranial and neral, had the highest relative levels of 51.12% (12th week) and 28.63% (6th week), respectively. The OY was closely related to the developmental stage of the oil cells. In the 1st–2nd weeks, the oil cells were mostly in the non-essential oil stage and essential oil-forming stage, with a lower OY; oil cells reached saturation in the 12–24th weeks, with a higher OY. Transmission electron microscopy showed that osmium droplets were present in large quantities during leaf development and gradually integrated into the vacuoles, finally making the vacuoles become oil bladders for oil storage. In conclusion, EO may have new uses due to the different OCs in leaf development; additionally, the microscopic changes in C. officinarum provide a reference for the cellular mechanism of EO accumulation.

Funder

General Project of Jiangxi Provincial Natural Science Foundation

Key Research and Development Plan of Jiangxi Province

Doctoral Research Project of Nanchang Institute of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3