Water Extracts of Cruciferous Vegetable Seeds Inhibit Enzymic Browning of Fresh-Cut Mid Ribs of Romaine Lettuce

Author:

Androudis Efstratios1,Gerasopoulos Athanasios2,Koukounaras Athanasios3ORCID,Siomos Anastasios S.3ORCID,Gerasopoulos Dimitrios1ORCID

Affiliation:

1. Department of Food Science and Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

2. Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

3. Department of Horticulture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Abstract

Enzymatic browning, occurring on the cut surfaces of many popular fresh-cut fruit and vegetables due to wounding and the activity of endogenous polyphenyloxidase enzymes, is considered as the main reason for their rejection by consumers. In this study, water extracts were obtained from seeds of cabbage, sinapis, and wild rocket at 10 and 20% w/w seed:water ratios (SWE) and analyzed for total phenolic compounds (TPC) and antioxidant capacity (AC). The extract was then applied on cut surfaces of mid rib segments of lettuce leaves for 1 or 3 min. The segments were stored at 7 °C for 14 days. The SWE’s inhibitory capacity on enzymatic browning were measured by CIELAB color coordinates L* a* and b* and expressed as second derivatives, their % inhibition and different indices. An additional visual acceptance measurement and calculation of shelf life was also performed. The seed extracts of cabbage at 10–20% and wild rocket at 20% showed the highest anti-browning efficacy (comparable to 25 mM potassium metabisulfite control) along with TPC and AC. A high % of seed:water extract and increased exposure time led to a considerable increase in shelf life, visual score, % inhibition of browning or whitening index of the extracts of all seed sources. Chromatometric outcome data clearly showed that the visual data were more accurate than the chromatometric procedure (L*, a*, b* values, their derives ΔE, h°, C, Δh° and ΔC or calculated indices), although the latter could detect the differing degrees of browning development or its inhibition in treated and control segments during storage.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3