Early Bruise Detection in Apple Based on an Improved Faster RCNN Model

Author:

Hou Jingli1,Che Yuhang12,Fang Yanru1,Bai Hongyi12ORCID,Sun Laijun12

Affiliation:

1. College of Electronics and Engineering, Heilongjiang University, Harbin 150080, China

2. Industrial Technology Research Institute at Jiaxiang, Heilongjiang University, Jining 247200, China

Abstract

Bruising is a common occurrence in apples that can lead to gradual fruit decay and substantial economic losses. Due to the lack of visible external features, the detection of early-stage bruising (occurring within 0.5 h) is difficult. Moreover, the identification of stems and calyxes is also important. Here, we studied the use of the short-wave infrared (SWIR) camera and the Faster RCNN model to enable the identification of bruises on apples. To evaluate the effectiveness of early bruise detection by SWIR bands compared to the visible/near-infrared (Vis/NIR) bands, a hybrid dataset with images from two cameras with different bands was used for validation. To improve the accuracy of the model in detecting apple bruises, calyxes, and stems, several improvements are implemented. Firstly, the Feature Pyramid Network (FPN) structure was integrated into the ResNet50 feature extraction network. Additionally, the Normalization-based Attention Module (NAM) was incorporated into the residual network, serving to bolster the attention of model towards detection targets while effectively mitigating the impact of irrelevant features. To reduce false positives and negatives, the Intersection over Union (IoU) metric was replaced with the Complete-IoU (CIoU). Comparison of the detection performance of the Faster RCNN model, YOLOv4P model, YOLOv5s model, and the improved Faster RCNN model, showed that the improved model had the best evaluation indicators. It achieved a mean Average Precision (mAP) of 97.4% and F1 score of 0.87. The results of research indicate that it is possible to accurately and effectively identify early bruises, calyxes, and stems on apples using SWIR cameras and deep learning models. This provides new ideas for real-time online sorting of apples for the presence of bruises.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province

Key Research and Development Program of Heilongjiang

University Nursing Program for Young Scholar with Creative Talents in Heilongjiang Province

Fundamental Research Funds for the Heilongjiang Provincial Universities

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3