Nitrates and Microbiome Components Engaged in Denitrification within Soil Regulate Morchella spp. Growth

Author:

Li Yujia12,Lin Wei12ORCID,Chen Jie1,Lin Junbin1,Feng Rencai1,Yan Junjie1,Miao Renyun1,Gan Bingcheng1

Affiliation:

1. Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China

2. State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Beijing 100081, China

Abstract

Morels (Morchella spp.) are a kind of rare and precious edible fungus and have been successfully cultivated in many places. Currently, the widespread cultivation of morels poses a significant challenge owing to their demanding environmental requirements. Soil properties and the soil microbiome are thought to play pivotal roles in morel growth. However, it remains unknown what factors exert a decisive influence on morel growth. In this study, soils with different morel yields were studied in nine sites from four locations. The basic soil physical and chemical properties were measured. In addition, the soil microbiome was analyzed using high-throughput metagenomic sequencing. We found that soil pH, nitrogen, carbon and conductivity were key indicators for the impact on microbial communities in soil for cultivating morels. Among these, nitrate was more positively associated with morel yield. The soil microbial diversity was more abundant in the soil with a high morel yield. Moreover, certain unknown archaea might be unfavorable to morel growth. The microbes that perform incomplete denitrification (no step of N2O reduction to N2) and nitrogen fixation were positively and negatively correlated with morel growth, respectively. In summary, morels prefer to live in nutrient-rich soils with a variety of microbes and are supported by nitrate and microbiome components involved in denitrification. The findings elucidate a pivotal mechanism in eliciting morel fructification and provide valuable insights for guiding production practices.

Funder

Agricultural Science and Technology Innovation Program

Central Public-interest Scientific Institution Basal Research Fund

State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China

Local Financial of National Agricultural Science & Technology Center, Chengdu

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3