Physiological Characteristics and Transcriptional Differences of Growth Traits of Persimmon with Different Ploidy

Author:

Pu Tingting1ORCID,Wang Yiru1,Han Weijuan1,Li Huawei1,Sun Peng1ORCID,Suo Yujing1,Fu Jianmin1

Affiliation:

1. Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China

Abstract

Ploidy breeding is one of the important approaches for persimmon (Diospyros kaki Thunb.) genetic improvement, and vegetative growth of seedlings is the basis for subsequent fruit development. Therefore, the physiological characteristics and transcriptional differences of seedling growth traits in different ploidy persimmon germplasm were studied in this study, which provided a theoretical basis for fruit evaluation and breeding of new polyploid persimmon varieties. Nonuploid and its full-sib hexaploid seedlings obtained from endosperm culture were used as materials. By observing plant phenotype, leaf tissue section, endogenous hormone content, and transcriptome sequencing, the phenotype and physiological characteristics of different ploidy Persimmon seedlings were compared, as well as the differences in transcription levels. (1) Compared with hexaploid seedlings, the nonuploid were more robust and compact, and the leaves were obviously thicker. The cell size of leaf veins and parenchyma were significantly different between the different ploidy plants. (2) The contents of Salicylic Acid (SA), Jasmonic Acid (JA), gibberellin A1 (GA1), gibberellin A3 (GA3) and Indole-3-acetic acid (IAA) in nonuploid leaves were significantly higher than those in hexaploid leaves, while the contents of cytokinin trans-zeanoside (Tzt) and dihydrozeanoside (DZR), N6-isopentenyladenine (iP) and Jasmonoyl-L-isoleucine (JA-ILE) in nonuploid leaves were significantly lower than those in hexaploid leaves. (3) A total of 5796 differentially expressed genes were identified in nonuploid and hexaploid leaves. These differentially expressed genes were mainly related to photosynthesis, plant-pathogen interaction, etc. Among them, YUCCA genes, GA3ox genes, and IPT genes related to hormone synthesis were significantly differentially expressed in the nonuploid and hexaploid leaves. It is speculated that it may be the key regulatory gene that leads to the difference in IAA, gibberellin (GA), and indolepropionic acid (IPA) levels in the nonuploid and the hexaploid. The growth traits of the new Persimmon germplasms with different ploidy were significantly different. The nonuploid plants were shorter and more compact, and the leaves were larger and thicker. These traits were closely related to the content of endogenous hormones, and the balance of endogenous hormones was affected by gene expression. In addition, based on the biological processes involved in hormones and differentially expressed genes, it is speculated that the nonuploid may be superior to the hexaploid in terms of resistance.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Reference29 articles.

1. Annual variation of total polyphenol and flavonoid contents in leaves of different species (varieties) of Diospyros;Han;J. China Agric. Univ.,2016

2. Identification of natural 2n pollens in different persimmon germplasms and ascertainment of their induction period;Mei;J. China Agric. Univ.,2019

3. Research Progress in the Genetic Resources of Dispyros kaki;Tong;Hubei Agric. Sci.,2008

4. Polyploidization and domestication;Yang;Sci. China Life Sci.,2021

5. Study of variation in the growth, photosynthesis, and content of secondary metabolites in Eucommia triploids;Li;Trees,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3