Evaluating Tropical Cyclone-Induced Flood and Surge Risks for Vanuatu by Assessing Location Hazard Susceptibility

Author:

Do Cameron12ORCID,Kuleshov Yuriy12,Choy Suelynn1,Sun Chayn1ORCID

Affiliation:

1. School of Science, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC 3001, Australia

2. Climate Risk and Early Warning Systems (CREWS), Bureau of Meteorology, Melbourne, VIC 3001, Australia

Abstract

Tropical cyclones (TCs) can be devastating events for vulnerable countries like Vanuatu, impacting their population, livelihoods, and infrastructure, leaving the country in need of aid and recovery. Despite this, comprehensive risk information on the nuanced impacts of each region is not well understood. Every TC event is different, and understanding the potential for impact at each location empowers decision makers in the lead-up to an event or during off-season planning to make more informed decisions to direct disaster risk reduction efforts. TC hazard model data typically describe intensity and likelihood, which can be fed into risk assessment frameworks to describe probabilistic risk. This study instead uses freely available remote sensing data to create proxies for the TC hazards of storm surge and flooding and to describe only the intensity of the hazard if the event occurs at the location. This hazard susceptibility index is fed into a risk assessment framework with Vanuatu exposure and vulnerability data for domains of populations, housing, and roads. These methods allow for the risk to be estimated for each month, as well as during specific historical time periods of TC Pam, TC Harold, and the TCs Judy and Kevin, enabling future impact validation. The results show households to have the highest risk, followed by roads and population domains, while a TC-induced surge risk is overall higher than TC-induced flooding, particularly in the road domain. The results, however, show a likely underestimation of event hazards and an overestimation of Port Vila’s resistance to impacts, which is a subject of future investigation and validation.

Funder

the Green Climate Fund (GCF) and the Secretariat of the Pacific Regional Environment Programme

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3